Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | 3x 2386x 1193x 34x 1193x 707x 707x 707x 707x 707x 707x 707x 707x 707x 707x 707x 707x 707x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 3477x 3477x 1159x 1159x 1159x 1159x 1091x 1091x 1091x | import { CPUFallbackTransform, Point2, TransformMatrix2D, } from '../../../../types'; // By Simon Sarris // Www.simonsarris.com // Sarris@acm.org // // Free to use and distribute at will // So long as you are nice to people, etc // Simple class for keeping track of the current transformation matrix // For instance: // Var t = new Transform(); // T.rotate(5); // Var m = t.m; // Ctx.setTransform(m[0], m[1], m[2], m[3], m[4], m[5]); // Is equivalent to: // Ctx.rotate(5); // But now you can retrieve it :) // Remember that this does not account for any CSS transforms applied to the canvas export class Transform implements CPUFallbackTransform { private m: TransformMatrix2D; constructor() { this.reset(); } getMatrix(): TransformMatrix2D { return this.m; } reset(): void { this.m = [1, 0, 0, 1, 0, 0]; } clone(): CPUFallbackTransform { const transform = new Transform(); transform.m[0] = this.m[0]; transform.m[1] = this.m[1]; transform.m[2] = this.m[2]; transform.m[3] = this.m[3]; transform.m[4] = this.m[4]; transform.m[5] = this.m[5]; return transform; } multiply(matrix: TransformMatrix2D): void { const m11 = this.m[0] * matrix[0] + this.m[2] * matrix[1]; const m12 = this.m[1] * matrix[0] + this.m[3] * matrix[1]; const m21 = this.m[0] * matrix[2] + this.m[2] * matrix[3]; const m22 = this.m[1] * matrix[2] + this.m[3] * matrix[3]; const dx = this.m[0] * matrix[4] + this.m[2] * matrix[5] + this.m[4]; const dy = this.m[1] * matrix[4] + this.m[3] * matrix[5] + this.m[5]; this.m[0] = m11; this.m[1] = m12; this.m[2] = m21; this.m[3] = m22; this.m[4] = dx; this.m[5] = dy; } invert(): void { const d = 1 / (this.m[0] * this.m[3] - this.m[1] * this.m[2]); const m0 = this.m[3] * d; const m1 = -this.m[1] * d; const m2 = -this.m[2] * d; const m3 = this.m[0] * d; const m4 = d * (this.m[2] * this.m[5] - this.m[3] * this.m[4]); const m5 = d * (this.m[1] * this.m[4] - this.m[0] * this.m[5]); this.m[0] = m0; this.m[1] = m1; this.m[2] = m2; this.m[3] = m3; this.m[4] = m4; this.m[5] = m5; } rotate(rad: number): void { const c = Math.cos(rad); const s = Math.sin(rad); const m11 = this.m[0] * c + this.m[2] * s; const m12 = this.m[1] * c + this.m[3] * s; const m21 = this.m[0] * -s + this.m[2] * c; const m22 = this.m[1] * -s + this.m[3] * c; this.m[0] = m11; this.m[1] = m12; this.m[2] = m21; this.m[3] = m22; } translate(x: number, y: number): void { this.m[4] += this.m[0] * x + this.m[2] * y; this.m[5] += this.m[1] * x + this.m[3] * y; } scale(sx: number, sy: number) { this.m[0] *= sx; this.m[1] *= sx; this.m[2] *= sy; this.m[3] *= sy; } transformPoint(point: Point2): Point2 { const x = point[0]; const y = point[1]; return [ x * this.m[0] + y * this.m[2] + this.m[4], x * this.m[1] + y * this.m[3] + this.m[5], ]; } } |