Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | 4x 4x 5x 1x 1x 1x 1x 1x 1x 1x 1x 36x 9x 9x 15x 15x 15x 3x 3x 3x 3x 3x 3x 3x 3x | import { Point3, Plane } from '../types'; import { vec3, mat3 } from 'gl-matrix'; /** * It calculates the intersection of a line and a plane. * Plane equation is Ax+By+Cz=D * @param p0 - [x,y,z] of the first point of the line * @param p1 - [x,y,z] of the second point of the line * @param plane - [A, B, C, D] Plane parameter: Ax+By+Cz=D * @returns - [X,Y,Z] coordinates of the intersection */ function linePlaneIntersection(p0: Point3, p1: Point3, plane: Plane): Point3 { const [x0, y0, z0] = p0; const [x1, y1, z1] = p1; const [A, B, C, D] = plane; const a = x1 - x0; const b = y1 - y0; const c = z1 - z0; const t = (-1 * (A * x0 + B * y0 + C * z0 - D)) / (A * a + B * b + C * c); const X = a * t + x0; const Y = b * t + y0; const Z = c * t + z0; return [X, Y, Z]; } /** * It returns the plane equation defined by a point and a normal vector. * @param normal - normal vector * @param point - a point on the plane * @returns - [A, B,C, D] of plane equation A*X + B*Y + C*Z = D */ function planeEquation(normal: Point3, point: Point3 | vec3): Plane { const [A, B, C] = normal; const D = A * point[0] + B * point[1] + C * point[2]; return [A, B, C, D]; } /** * Computes the intersection of three planes in 3D space with equations: * A1*X + B1*Y + C1*Z = D1 * A2*X + B2*Y + C2*Z = D2 * A3*X + B3*Y + C3*Z = D3 * @returns - [x, y, z] the intersection in the world coordinate */ function threePlaneIntersection( firstPlane: Plane, secondPlane: Plane, thirdPlane: Plane ): Point3 { const [A1, B1, C1, D1] = firstPlane; const [A2, B2, C2, D2] = secondPlane; const [A3, B3, C3, D3] = thirdPlane; const m0 = mat3.fromValues(A1, A2, A3, B1, B2, B3, C1, C2, C3); const m1 = mat3.fromValues(D1, D2, D3, B1, B2, B3, C1, C2, C3); const m2 = mat3.fromValues(A1, A2, A3, D1, D2, D3, C1, C2, C3); const m3 = mat3.fromValues(A1, A2, A3, B1, B2, B3, D1, D2, D3); // TODO: handle no intersection scenario const x = mat3.determinant(m1) / mat3.determinant(m0); const y = mat3.determinant(m2) / mat3.determinant(m0); const z = mat3.determinant(m3) / mat3.determinant(m0); return [x, y, z]; } /** * Computes the distance of a point in 3D space to a plane * @param plane - [A, B, C, D] of plane equation A*X + B*Y + C*Z = D * @param point - [A, B, C] the plane in World coordinate * @param signed - if true, the distance is signed * @returns - the distance of the point to the plane * */ function planeDistanceToPoint( plane: Plane, point: Point3, signed = false ): number { const [A, B, C, D] = plane; const [x, y, z] = point; const numerator = A * x + B * y + C * z - D; const distance = Math.abs(numerator) / Math.sqrt(A * A + B * B + C * C); const sign = signed ? Math.sign(numerator) : 1; return sign * distance; } export { linePlaneIntersection, planeEquation, threePlaneIntersection, planeDistanceToPoint, }; |