Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 | 1x 1x 176x 22x 22x 22x 22x 22x 22x 22x 22x 22x 22x 22x 22x 15x 29x 15x 29x 22x 22x 12x 12x 10x 2x 2x 2x 2x 2x 5x 5x 5x 5x 5x 5x 5x 2x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 15x 15x 15x 15x 15x 3x 5x 25x 25x 10x 15x 15x 15x 15x 15x 15x 15x 15x 15x 15x 3x 3x 3x 3x 12x 25x 5x 20x 20x 20x 20x 20x 20x 20x 20x 20x 5x 25x 25x 25x 25x 25x 25x 25x 25x 25x 25x 25x 25x 5x 5x 5x 5x 25x 25x 25x 2x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 1x 1x 1x 1x 1x 5x 5x 5x 5x 5x 1x 2x 2x 1x 1x | import { Enums, eventTarget, metaData, imageLoadPoolManager, triggerEvent, ImageVolume, cache, imageLoader, utilities as csUtils, } from '@cornerstonejs/core'; import type { Types } from '@cornerstonejs/core'; import { scaleArray, autoLoad } from './helpers'; const requestType = Enums.RequestType.Prefetch; const { getMinMax } = csUtils; /** * Streaming Image Volume Class that extends ImageVolume base class. * It implements load method to load the imageIds and insert them into the volume. */ export default class StreamingImageVolume extends ImageVolume { private _cornerstoneImageMetaData; loadStatus: { loaded: boolean; loading: boolean; cachedFrames: Array<boolean>; callbacks: Array<(...args: unknown[]) => void>; }; constructor( imageVolumeProperties: Types.IVolume, streamingProperties: Types.IStreamingVolumeProperties ) { super(imageVolumeProperties); this.imageIds = streamingProperties.imageIds; this.loadStatus = streamingProperties.loadStatus; this._createCornerstoneImageMetaData(); } /** * Creates the metadata required for converting the volume to an cornerstoneImage */ private _createCornerstoneImageMetaData() { const numImages = this.imageIds.length; const bytesPerImage = this.sizeInBytes / numImages; const numComponents = this.scalarData.length / this.numVoxels; const pixelsPerImage = this.dimensions[0] * this.dimensions[1] * numComponents; const { PhotometricInterpretation, voiLut } = this.metadata; let windowCenter = []; let windowWidth = []; if (voiLut && voiLut.length) { windowCenter = voiLut.map((voi) => { return voi.windowCenter; }); windowWidth = voiLut.map((voi) => { return voi.windowWidth; }); } const color = numComponents > 1 ? true : false; //todo: fix this this._cornerstoneImageMetaData = { bytesPerImage, numComponents, pixelsPerImage, windowCenter, windowWidth, color, spacing: this.spacing, dimensions: this.dimensions, PhotometricInterpretation, invert: PhotometricInterpretation === 'MONOCHROME1', }; } private _hasLoaded = (): boolean => { const { loadStatus, imageIds } = this; const numFrames = imageIds.length; for (let i = 0; i < numFrames; i++) { if (!loadStatus.cachedFrames[i]) { return false; } } return true; }; /** * It cancels loading the images of the volume. It sets the loading status to false * and filters any imageLoad request in the requestPoolManager that has the same * volumeId */ public cancelLoading = () => { const { loadStatus } = this; if (!loadStatus || !loadStatus.loading) { return; } // Set to not loading. loadStatus.loading = false; // Remove all the callback listeners this.clearLoadCallbacks(); // Create a filter function which only keeps requests // which do not match this volume's Id const filterFunction = ({ additionalDetails }) => { return additionalDetails.volumeId !== this.volumeId; }; // Instruct the request pool manager to filter queued // requests to ensure requests we no longer need are // no longer sent. imageLoadPoolManager.filterRequests(filterFunction); }; /** * Clear the load callbacks */ public clearLoadCallbacks(): void { this.loadStatus.callbacks = []; } /** * It triggers a prefetch for images in the volume. * @param callback - A callback function to be called when the volume is fully loaded * @param priority - The priority for loading the volume images, lower number is higher priority * @returns */ public load = ( callback: (...args: unknown[]) => void, priority = 5 ): void => { const { imageIds, loadStatus } = this; Iif (loadStatus.loading === true) { console.log( `loadVolume: Loading is already in progress for ${this.volumeId}` ); return; // Already loading, will get callbacks from main load. } const { loaded } = this.loadStatus; const numFrames = imageIds.length; Iif (loaded) { if (callback) { callback({ success: true, framesLoaded: numFrames, numFrames, framesProcessed: numFrames, }); } return; } if (callback) { this.loadStatus.callbacks.push(callback); } this._prefetchImageIds(priority); }; /** * It returns the imageLoad requests for the streaming image volume instance. * It involves getting all the imageIds of the volume and creating a success callback * which would update the texture (when the image has loaded) and the failure callback. * Note that this method does not run executes the requests but only returns the requests. * It can be used for sorting requests outside of the volume loader itself * e.g. loading a single slice of CT, followed by a single slice of PET (interleaved), before * moving to the next slice. * * @returns Array of requests including imageId of the request, its imageIdIndex, * options (targetBuffer and scaling parameters), and additionalDetails (volumeId) */ public getImageLoadRequests = (priority: number) => { const { scalarData, loadStatus } = this; const { cachedFrames } = loadStatus; const { imageIds, vtkOpenGLTexture, imageData, metadata, volumeId } = this; const { FrameOfReferenceUID } = metadata; loadStatus.loading = true; // SharedArrayBuffer const arrayBuffer = scalarData.buffer; const numFrames = imageIds.length; // Length of one frame in voxels const length = scalarData.length / numFrames; // Length of one frame in bytes const lengthInBytes = arrayBuffer.byteLength / numFrames; let type; Eif (scalarData instanceof Uint8Array) { type = 'Uint8Array'; } else if (scalarData instanceof Float32Array) { type = 'Float32Array'; } else { throw new Error('Unsupported array type'); } let framesLoaded = 0; let framesProcessed = 0; const autoRenderOnLoad = true; const autoRenderPercentage = 2; let reRenderFraction; let reRenderTarget; Eif (autoRenderOnLoad) { reRenderFraction = numFrames * (autoRenderPercentage / 100); reRenderTarget = reRenderFraction; } function callLoadStatusCallback(evt) { // TODO: probably don't want this here Eif (autoRenderOnLoad) { Eif ( evt.framesProcessed > reRenderTarget || evt.framesProcessed === evt.numFrames ) { reRenderTarget += reRenderFraction; autoLoad(volumeId); } } if (evt.framesProcessed === evt.numFrames) { loadStatus.callbacks.forEach((callback) => callback(evt)); } } const successCallback = ( imageIdIndex: number, imageId: string, scalingParameters ) => { // Check if there is a cached image for the same imageURI (different // data loader scheme) const cachedImage = cache.getCachedImageBasedOnImageURI(imageId); // check if we are still loading the volume and we have not canceled loading if (!loadStatus.loading) { return; } Eif (!cachedImage || !cachedImage.image) { return updateTextureAndTriggerEvents(this, imageIdIndex, imageId); } const imageScalarData = this._scaleIfNecessary( cachedImage.image, scalingParameters ); // todo add scaling and slope const { pixelsPerImage, bytesPerImage } = this._cornerstoneImageMetaData; const TypedArray = this.scalarData.constructor; let byteOffset = bytesPerImage * imageIdIndex; // create a view on the volume arraybuffer const bytePerPixel = bytesPerImage / pixelsPerImage; if (this.scalarData.BYTES_PER_ELEMENT !== bytePerPixel) { byteOffset *= this.scalarData.BYTES_PER_ELEMENT / bytePerPixel; } // @ts-ignore const volumeBufferView = new TypedArray( arrayBuffer, byteOffset, pixelsPerImage ); cachedImage.imageLoadObject.promise .then((image) => { volumeBufferView.set(imageScalarData); updateTextureAndTriggerEvents(this, imageIdIndex, imageId); }) .catch((err) => { errorCallback(err, imageIdIndex, imageId); }); return; }; function updateTextureAndTriggerEvents( volume: StreamingImageVolume, imageIdIndex, imageId ) { cachedFrames[imageIdIndex] = true; framesLoaded++; framesProcessed++; vtkOpenGLTexture.setUpdatedFrame(imageIdIndex); imageData.modified(); const eventDetail: Types.EventTypes.ImageVolumeModifiedEventDetail = { FrameOfReferenceUID, imageVolume: volume, }; triggerEvent( eventTarget, Enums.Events.IMAGE_VOLUME_MODIFIED, eventDetail ); if (framesProcessed === numFrames) { loadStatus.loaded = true; loadStatus.loading = false; // TODO: Should we remove the callbacks in favour of just using events? callLoadStatusCallback({ success: true, imageIdIndex, imageId, framesLoaded, framesProcessed, numFrames, }); loadStatus.callbacks = []; } else { callLoadStatusCallback({ success: true, imageIdIndex, imageId, framesLoaded, framesProcessed, numFrames, }); } } function errorCallback(error, imageIdIndex, imageId) { framesProcessed++; if (framesProcessed === numFrames) { loadStatus.loaded = true; loadStatus.loading = false; callLoadStatusCallback({ success: false, imageId, imageIdIndex, error, framesLoaded, framesProcessed, numFrames, }); loadStatus.callbacks = []; } else { callLoadStatusCallback({ success: false, imageId, imageIdIndex, error, framesLoaded, framesProcessed, numFrames, }); } const eventDetail = { error, imageIdIndex, imageId, }; triggerEvent(eventTarget, Enums.Events.IMAGE_LOAD_ERROR, eventDetail); } function handleArrayBufferLoad(scalarData, image, options) { if (!(scalarData.buffer instanceof ArrayBuffer)) { return; } const offset = options.targetBuffer.offset; // in bytes const length = options.targetBuffer.length; // in frames try { Iif (scalarData instanceof Float32Array) { const bytesInFloat = 4; const floatView = new Float32Array(image.pixelData); if (floatView.length !== length) { throw 'Error pixelData length does not match frame length'; } scalarData.set(floatView, offset / bytesInFloat); } Eif (scalarData instanceof Uint8Array) { const bytesInUint8 = 1; const intView = new Uint8Array(image.pixelData); Iif (intView.length !== length) { throw 'Error pixelData length does not match frame length'; } scalarData.set(intView, offset / bytesInUint8); } } catch (e) { console.error(e); } } const requests = imageIds.map((imageId, imageIdIndex) => { Iif (cachedFrames[imageIdIndex]) { framesLoaded++; framesProcessed++; return; } const modalityLutModule = metaData.get('modalityLutModule', imageId) || {}; const generalSeriesModule = metaData.get('generalSeriesModule', imageId) || {}; const scalingParameters: Types.ScalingParameters = { rescaleSlope: modalityLutModule.rescaleSlope, rescaleIntercept: modalityLutModule.rescaleIntercept, modality: generalSeriesModule.modality, }; Iif (scalingParameters.modality === 'PT') { const suvFactor = metaData.get('scalingModule', imageId); if (suvFactor) { this._addScalingToVolume(suvFactor); scalingParameters.suvbw = suvFactor.suvbw; } } const options = { // WADO Image Loader targetBuffer: { // keeping this in the options means a large empty volume array buffer // will be transferred to the worker. This is undesirable for streaming // volume without shared array buffer because the target is now an empty // 300-500MB volume array buffer. Instead the volume should be progressively // set in the main thread. arrayBuffer: arrayBuffer instanceof ArrayBuffer ? undefined : arrayBuffer, offset: imageIdIndex * lengthInBytes, length, type, }, skipCreateImage: true, preScale: { enabled: true, // we need to pass in the scalingParameters here, since the streaming // volume loader doesn't go through the createImage phase in the loader, // and therefore doesn't have the scalingParameters scalingParameters, }, }; // Use loadImage because we are skipping the Cornerstone Image cache // when we load directly into the Volume cache const callLoadImage = (imageId, imageIdIndex, options) => { return imageLoader.loadImage(imageId, options).then( (image) => { // scalarData is the volume container we are progressively loading into // image is the pixelData decoded from workers in cornerstoneWADOImageLoader const scalarData = this.scalarData; handleArrayBufferLoad(scalarData, image, options); successCallback(imageIdIndex, imageId, scalingParameters); }, (error) => { errorCallback(error, imageIdIndex, imageId); } ); }; return { callLoadImage, imageId, imageIdIndex, options, priority, requestType, additionalDetails: { volumeId: this.volumeId, }, }; }); return requests; }; private _prefetchImageIds(priority: number) { const requests = this.getImageLoadRequests(priority); requests.reverse().forEach((request) => { Iif (!request) { // there is a cached image for the imageId and no requests will fire return; } const { callLoadImage, imageId, imageIdIndex, options, priority, requestType, additionalDetails, } = request; imageLoadPoolManager.addRequest( callLoadImage.bind(this, imageId, imageIdIndex, options), requestType, additionalDetails, priority ); }); } /** * This function decides whether or not to scale the image based on the * scalingParameters. If the image is already scaled, we should take that * into account when scaling the image again, so if the rescaleSlope and/or * rescaleIntercept are different from the ones that were used to scale the * image, we should scale the image again according to the new parameters. */ private _scaleIfNecessary( image, scalingParametersToUse: Types.ScalingParameters ) { const imageIsAlreadyScaled = image.preScale?.scaled; const noScalingParametersToUse = !scalingParametersToUse || !scalingParametersToUse.rescaleIntercept || !scalingParametersToUse.rescaleSlope; if (!imageIsAlreadyScaled && noScalingParametersToUse) { // no need to scale the image return image.getPixelData().slice(0); } if ( !imageIsAlreadyScaled && scalingParametersToUse && scalingParametersToUse.rescaleIntercept !== undefined && scalingParametersToUse.rescaleSlope !== undefined ) { // if not already scaled, just scale the image. // copy so that it doesn't get modified const pixelDataCopy = image.getPixelData().slice(0); const scaledArray = scaleArray(pixelDataCopy, scalingParametersToUse); return scaledArray; } // if the image is already scaled, const { rescaleSlope: rescaleSlopeToUse, rescaleIntercept: rescaleInterceptToUse, suvbw: suvbwToUse, } = scalingParametersToUse; const { rescaleSlope: rescaleSlopeUsed, rescaleIntercept: rescaleInterceptUsed, suvbw: suvbwUsed, } = image.preScale.scalingParameters; const rescaleSlopeIsSame = rescaleSlopeToUse === rescaleSlopeUsed; const rescaleInterceptIsSame = rescaleInterceptToUse === rescaleInterceptUsed; const suvbwIsSame = suvbwToUse === suvbwUsed; if (rescaleSlopeIsSame && rescaleInterceptIsSame && suvbwIsSame) { // if the scaling parameters are the same, we don't need to scale the image again return image.getPixelData(); } const pixelDataCopy = image.getPixelData().slice(0); // the general formula for scaling is scaledPixelValue = suvbw * (pixelValue * rescaleSlope) + rescaleIntercept const newSuvbw = suvbwToUse / suvbwUsed; const newRescaleSlope = rescaleSlopeToUse / rescaleSlopeUsed; const newRescaleIntercept = rescaleInterceptToUse - rescaleInterceptUsed * newRescaleSlope; const newScalingParameters = { ...scalingParametersToUse, rescaleSlope: newRescaleSlope, rescaleIntercept: newRescaleIntercept, suvbw: newSuvbw, }; const scaledArray = scaleArray(pixelDataCopy, newScalingParameters); return scaledArray; } private _addScalingToVolume(suvFactor) { // Todo: handle case where suvFactors are not the same for all frames if (this.scaling) { return; } const { suvbw, suvlbm, suvbsa } = suvFactor; const petScaling = <Types.PTScaling>{}; if (suvlbm) { petScaling.suvbwToSuvlbm = suvlbm / suvbw; } if (suvbsa) { petScaling.suvbwToSuvbsa = suvbsa / suvbw; } this.scaling = { PET: petScaling }; this.isPrescaled = true; } private _removeFromCache() { // TODO: not 100% sure this is the same Id as the volume loader's volumeId? // so I have no idea if this will work cache.removeVolumeLoadObject(this.volumeId); } /** * Converts the requested imageId inside the volume to a cornerstoneImage * object. It uses the typedArray set method to copy the pixelData from the * correct offset in the scalarData to a new array for the image * * @param imageId - the imageId of the image to be converted * @param imageIdIndex - the index of the imageId in the imageIds array * @returns imageLoadObject containing the promise that resolves * to the cornerstone image */ public convertToCornerstoneImage( imageId: string, imageIdIndex: number ): Types.IImageLoadObject { const { imageIds } = this; const { bytesPerImage, pixelsPerImage, windowCenter, windowWidth, numComponents, color, dimensions, spacing, invert, } = this._cornerstoneImageMetaData; // 1. Grab the buffer and it's type const volumeBuffer = this.scalarData.buffer; // (not sure if this actually works, TypeScript keeps complaining) const TypedArray = this.scalarData.constructor; // 2. Given the index of the image and frame length in bytes, // create a view on the volume arraybuffer const bytePerPixel = bytesPerImage / pixelsPerImage; let byteOffset = bytesPerImage * imageIdIndex; // If there is a discrepancy between the volume typed array // and the bitsAllocated for the image. The reason is that VTK uses Float32 // on the GPU and if the type is not Float32, it will convert it. So for not // having a performance issue, we convert all types initially to Float32 even // if they are not Float32. Iif (this.scalarData.BYTES_PER_ELEMENT !== bytePerPixel) { byteOffset *= this.scalarData.BYTES_PER_ELEMENT / bytePerPixel; } // 3. Create a new TypedArray of the same type for the new // Image that will be created // @ts-ignore const imageScalarData = new TypedArray(pixelsPerImage); // @ts-ignore const volumeBufferView = new TypedArray( volumeBuffer, byteOffset, pixelsPerImage ); // 4. Use e.g. TypedArray.set() to copy the data from the larger // buffer's view into the smaller one imageScalarData.set(volumeBufferView); // 5. Create an Image Object from imageScalarData and put it into the Image cache const volumeImageId = imageIds[imageIdIndex]; const modalityLutModule = metaData.get('modalityLutModule', volumeImageId) || {}; const minMax = getMinMax(imageScalarData); const intercept = modalityLutModule.rescaleIntercept ? modalityLutModule.rescaleIntercept : 0; const image: Types.IImage = { imageId, intercept, windowCenter, windowWidth, color, numComps: numComponents, rows: dimensions[0], columns: dimensions[1], sizeInBytes: imageScalarData.byteLength, getPixelData: () => imageScalarData, minPixelValue: minMax.min, maxPixelValue: minMax.max, slope: modalityLutModule.rescaleSlope ? modalityLutModule.rescaleSlope : 1, getCanvas: undefined, // todo: which canvas? height: dimensions[0], width: dimensions[1], rgba: undefined, // todo: how columnPixelSpacing: spacing[0], rowPixelSpacing: spacing[1], invert, }; // 5. Create the imageLoadObject const imageLoadObject = { promise: Promise.resolve(image), }; return imageLoadObject; } /** * Converts all the volume images (imageIds) to cornerstoneImages and caches them. * It iterates over all the imageIds and convert them until there is no * enough space left inside the imageCache. Finally it will decache the Volume. * */ private _convertToImages() { // 1. Try to decache images in the volatile Image Cache to provide // enough space to store another entire copy of the volume (as Images). // If we do not have enough, we will store as many images in the cache // as possible, and the rest of the volume will be decached. const byteLength = this.sizeInBytes; const numImages = this.imageIds.length; const { bytesPerImage } = this._cornerstoneImageMetaData; let bytesRemaining = cache.decacheIfNecessaryUntilBytesAvailable( byteLength, this.imageIds ); for (let imageIdIndex = 0; imageIdIndex < numImages; imageIdIndex++) { const imageId = this.imageIds[imageIdIndex]; bytesRemaining = bytesRemaining - bytesPerImage; // 2. Convert each imageId to a cornerstone Image object which is // resolved inside the promise of imageLoadObject const imageLoadObject = this.convertToCornerstoneImage( imageId, imageIdIndex ); // 3. Caching the image cache.putImageLoadObject(imageId, imageLoadObject).catch((err) => { console.error(err); }); // 4. If we know we won't be able to add another Image to the cache // without breaching the limit, stop here. Iif (bytesRemaining <= bytesPerImage) { break; } } // 5. When as much of the Volume is processed into Images as possible // without breaching the cache limit, remove the Volume this._removeFromCache(); } /** * If completelyRemove is true, remove the volume completely from the cache. Otherwise, * convert the volume to cornerstone images (stack images) and store it in the cache * @param completelyRemove - If true, the image will be removed from the * cache completely. */ public decache(completelyRemove = false): void { if (completelyRemove) { this._removeFromCache(); } else { this._convertToImages(); } } } |